BCH 258 lecture notes Wed. Sept 08, 2010 revised Structural Motifs and Domains

Homework:
- Reading Suggestion: Chapters 2 - 5 in Branden & Tooze
- WorkSheet5-Structural Classes: (preparation for Coloring Book)
- Coloring Book: due Wed. Sept 16

c2Motifs.kin, c3Alpha.kin, c4Al_Bet.kin, c5Beta.kin

In class:
revisit with Kendrews: Helix N-cap – residue half in & half out of helix: e.g. Asn

Structural Motifs: small, favored clusterings of 2-4 pieces of sec. str.; strong
 General preference for contact of near neighbors in sequence

 Helix hairpin: successive ↑↓ helices; pack best at ~15-20° angle
 Hydrophobic patches; spiral ridges of sidechains; coiled-coil
 ~90° helix contacts: “EF hand” Ca++-binding; “helix-turn-helix” DNA-binding

 β-hairpin: successive ↑↓ β strands; shortest with tight turn

 crossover or βαβ connection: successive ↑↑ β-strands
 >>99% righthanded; determines architecture of α/β folds

 Greek key β:

 SS β-cross: 2 touching SS spirals (1L,1R) on adjacent β hairpin strands

Domains, defined in terms of contained motifs

Structural Domain (the unit of tertiary-structure description, or “fold”)
 Local region in 3D with presumption of (or better score for) contiguous sequence
 (beware alternate definitions: 3D & sequence, or just sequence)
 (Note: “domain swap”: part of a domain swapped with a neighbor)
 Independently stable; may move as a rigid body
 Analogous structure to other entire protein (or plausible as such)

Major categories of tertiary structures (many “folds” in each category)
 I. All-α (chap. 3)
 II. α/β (chap. 4)
 III. All-β (chap. 5)
 +. Small irregular; mixtures; miscellaneous

(Alternative scheme: “Superfolds”)
 Commonest “folds” with same topology & shape in “core” part,
 Found in ≥ 3 unrelated protein families
α – motifs: helix-helix contacts; Hphobic patches; pack spiral ridges of sidechains
 Helix hairpin: adjacent, ↑↓ pair of α; +15-20°; form helix bundles
 EF hands, helix-turn-helix: adjacent pair ~90°; Ca ++ binding, DNA binding

Small irregular motifs:
 Zn finger in metal-rich (several kinds; bind DNA)
 SS β cross in SS-rich: 2 crossed SS’s, from β hairpin

α/β motifs: righthanded crossover, or βαβ unit
 its alternation of β & α, and its handedness, dominates α/β folds

α/β superfolds:
 singly-wound β-barrel, = TIM barrel, or = (βα)₈ barrel
 α/β horseshoe
 doubly-wound β-sheet, = twisted open sheet, or = nucleotide-binding domain
 the commonest protein fold, esp. for enzymes
 active or binding site at “switch point”

β motifs:
 β hairpin (2 ↑↓ strands)
 Greek key +1, -3; long β-hairpin coiled around,
 Handed (ccw from outside)
 twist of double ribbon (belt) becomes loops around "barrel" ends
 axis of barrel along strand direction,
 barrel closed by H-bonds of edge strands
 some quite round, some flattened:
 described as 2-layer "sandwich"

β superfolds:
 up & down β-barrel (& β-trefoils)
 Greek key β-barrel 6 or 8 strands, & “jellyroll” >8 strands
 open-face sheet
 β-propeller
 parallel β-helix
Coloring Book
In the Protein Structure Coloring Book (class hand-out), pick one α/β protein and one All-β protein to color, using any system that interests you and that makes sense relative to the 3D structure; hand in those two. [Note that the coloring book includes All-α and Small Irregular proteins as well.]

Graphics: Coloring Book Slides (shown in class) [slide_archive/ribbons etc/]
11. GammaCrystallinJane.jpg barrel fold
12. GammaCrystallinCyrus.jpg sheet sandwich
13. GammaCrystallinTom.jpg evolution, gene duplications
22. BPTISSluminated.jpg β sidedness, SS
31. SODpastel.jpg depth
32. TIMpastel.jpg depth and sec. str.
41. IggVLcolorBkice.jpg simple topol.: connections: GK vs hairpin
43. CAPgreekKeyPair.jpg simple: GK pair
45. CPAspider_Duncan.jpg complex: sec. str., sided, ~H-bonds, etc.