Roles of the Amino Acids, and mutations to replace them (ref Wrksht2_handedAAroles2008)

• Assignment: WrkSht7–mutations2008
 Graphics: All-atom contacts : (recall howdostwork3KiNG.kin)
 • Mutation check: 1mb6_85aH.kin : in class: show Thr 8 → Val does NOT work!
 (WorkSheet homework: show Tyr 22 → Trp does work!)
 Thr 8 → Asn NOT work, Asn 58 → Gln NOT work, (Gly 43 → Ser NOT work)
 Good N-cap residues, 2 sets: Ser, Thr vs. Asn, Asp

BACKGROUND

Hydrophobic “H” vs polar “P” : is the most important parameter
 “HP” pattern in sequence determines approx. 3D fold, puttin most H in, P out
 “H” : function of Hydrophobic surface area (but Cys also strongly buried)
 “P” : function of charge, H-bonding, polarizability (but Pro out, forming corners)
 alternating “HP” favors ↑↓ β; 3.5 period favors α helix; a run of “P” favors turns;
 long run of “H” favors transmembrane; short run of “H” favors ↑↑ β

Size, shape, & flexibility of sidechain

 Mainchain flexibility: Gly > Ala (and others) > branched Cβ > Pro > SS
 Entropy mutants (native vs unfolded): SS, A → P , G → A
 Sidechain degrees of freedom: Hydrophobics <= 2 chi’s (χ) (except Met 3))
 many Polars have more, esp/ Lys & Gln very loose
 Aromatics (FYWH): big & flat, help constrain packing
 slightly + on edge, - on face,
 more often perpendicular than stacked
 Pro: not aromatic, not flat; puckers up or down at Cγ
 ring constrains φ near -60°; good at turns;
 good in N-term end of α helix
 can do α middle, but bends helix
 Ile, Thr sidechains handed: long arm, or Og, on “left” side (arms in front of body)
 Sidechains “rotameric”, i.e. few preferred conformations; Cτetr near staggered
 Sidechain angles: χ1, χ2 , etc. dihedrals (χ4 max, for Lys & Arg)
 for bonds between tetrahedral carbons, staggered >> eclipsed
 overall, a few well-defined sidechain conformations are good: rotamers
 [only 2 good (4 more OK) for Leu; 13 for Met with 3 χ angles and no branches]
Secondary-structure preferences

Loop, turn, coil: Gly, Ser, Asn, Pro, & charges best; Hydrophobics poor
Beta: branched Cβ’s best (Val, Ile, Thr); Pro, Asn worst
Helix: in middle: Ala, Leu, Met, Gln best; Pro worst
 near beginning – charge good (Asp, Glu); near end + charge good (Lys, Arg, His)
N-cap: Asp, Asn, Ser, Thr best (sc H-bond to mc NH of N-cap +3 or +2)
N-cap +1: Pro best
C-cap: Gly best (usually has +φ value)
pair of touching Hydrophobics often bracket N or C caps

Pair comparisons (What is a conservative replacement?)

Arg ordered, H-bonded (5-planar O’s),
 vs Lys often disordered, helps solubility

Leu one of best for helix,
 vs Ile one of best for β-sheet

Asn backbone mimic, best non-Gly for +φ conf.; strong pref.s;
 amide constrained
 vs Gln “plain vanilla” residue: good α, OK most places;
 amide very free
 Asn one of best N-caps, Gln is worst
 Gln one of best at specific DNA base H-bonds,
 Asn too short & wrong angles

Multiple roles: distinguish by substitution pattern in aligned sequences

Arg: +charge (sub=Lys); oriented H-bonds (sub=Gln); Hydrophobic (sub=Tyr, Leu, Ile)
Gly: flexibility (sub=Ser); small size (sub=Ala or none); +φ conf. (sub=Asn)
His: titrates near pH 7 (no sub); +charge (sub=Lys, Arg); H-bonds (sub=Gln, Asn);
 metal ligand (sub= Cys, Asp, Glu)
Cys: buried SH (sub=Hydrophobics); SS (sub=Hydrophobics, rarely);
 metal ligand (sub=His, Asp, Glu, rarely)